原子内部电子动力学行为的演化是物理、化学、生物以及材料等学科研究中最基本的过程。精密测量电子的动力学特性,实现对其物理性质的理解,进而控制原子内电子的动力学行为是人们追求的重要科学目标之一。具有阿秒(10-18秒)时间分辨的高次谐波由于光子能量高(10eV~keV量级)、脉宽短(亚飞秒~几十阿秒)等特点,使得它在物理、化学和生物等领域有着广泛的应用。通过其与物质的相互作用,人们不仅可以研究原子、分子和固体中的超快动力学过程,而且还可以对纳米尺度的物质进行时间分辨的衍射成像。此外高次谐波也是自由电子激光装置、具有时间分辨的极短波长角电子能谱仪等科学装置中理想的种子脉冲及光源。澳门赌场物理研究所/北京凝聚态物理国家实验室(筹)光物理重点实验室魏志义研究员领导的研究组近年一直致力于阿秒激光高次谐波产生的研究,他们不仅观察到了高次谐波光谱中的复杂结构【Opt. Express 19, 17408 (2011)】,并且首次在国内测量到了单个阿秒激光脉冲 【Chin. Phys. Lett., 30(9), 093201 (2013), Opt. Express 21, 17498 (2013)】。
高次谐波的产生是一种超快超强激光场驱动下的极端非线性现象,可以看作是电子波包和母核的碰撞过程。在强激光场作用下,物质中基态电子波包被电离出母核到自由态后先得到加速,随着激光场的反向振荡,电子波包被拉回和母核碰撞,从而释放出高次谐波。根据自由态的电子在激光场中运动的时间,电子的运动可分为长轨道和短轨道,由于长短轨道的相位匹配条件不一样,在以往的实验中不能同时获得长短轨道产生的高次谐波。最近,该研究组的博士研究生叶蓬在滕浩副研究员、贺新奎副研究员及魏志义研究员的指导下,利用他们自己组建的阿秒激光装置,实现了电子波包在自由态的各条量子轨道上的直接定位,获得了全量子轨道分辨的高次谐波谱,研究结果发表在近期出版的《物理评论快报》【Phy Rev Lett, 113, 073601 (2014)】上。他们的研究结果表明,使用短于2个光振荡周期的驱动激光脉冲,通过调节驱动激光的空间相位分布和原子偶极相位的空间分布,可以令不同量子轨道产生的高次谐波在光谱中完全分开。图1为他们获得的长短轨道对应的高次谐波随驱动激光场载波包络相位CEP的调节变化而变化的实验结果,其中A、B、C对应驱动激光场的不同半周期激发出的高次谐波辐射分布角,所对应的长短轨道随发散角而分开,这样就形成了一个高次谐波谱到量子轨道的全映射图,通过该图也可以找到不同轨道对应的高次谐波光谱。这样通过改变驱动激光的CEP,就实现了利用激光场对长短轨道的控制。图2为长短轨道高次谐波谱的理论模拟与实验结果对比图。
由于驱动激光的时空分布、电子波包的时空演化和物质内部的结构信息通过碰撞过程被传递到高次谐波中,高次谐波的光谱也直接映射了电子的量子轨道信息,因此该研究结果对于深入了解高次谐波光谱所反映的物理图像,促进其在阿秒物理、原子分子物理和凝聚态物理等学科中的应用都有着重要意义。
该工作得到国家重大研究计划(量子调控)项目、自然科学基金项目和澳门赌场科研装备项目的支持。
论文信息:P. Ye, X.-K. He, H. Teng*, M.-J. Zhan, S.-Y. Zhong, W. Zhang, L.-F. Wang, and Z.-Y. Wei*. Full Quantum Trajectories Resolved High-Order Harmonic Generation. Phys. Rev. Lett. 113, 073601 (2014).
文章链接
图1. 全量子轨道分辨高次谐波空间分布随不同载波包络相位变化的关系
图2. 理论模拟与实验测量结果比较图,(a)理论模拟,(b)实验测量